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The rank-ordered multifractal analysis �ROMA�, a recently developed technique that combines the ideas of
parametric rank ordering and one-parameter scaling of monofractals, has the capabilities of deciphering the
multifractal characteristics of intermittent fluctuations. The method allows one to understand the multifractal
properties through rank-ordered scaling or nonscaling parametric variables. The idea of the ROMA technique
is applied to analyze the multifractal characteristics of the auroral zone electric-field fluctuations observed by
the SIERRA sounding rocket. The observed fluctuations span across contiguous multiple regimes of scales with
different multifractal characteristics. We extend the ROMA technique such that it can take into account the
crossover behavior—with the possibility of collapsing probability distribution functions—over these contigu-
ous regimes.
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I. INTRODUCTION

Increasing evidence based on the analyses of satellite and
spacecraft measurements has shown that plasma fields in
space are often intermittent in nature �1–7�. Associated with
intermittency, these field fluctuations exhibit multifractal
characteristics. The fluctuation series of these fields have
popularly been analyzed with structure functions and/or par-
tition functions �6–13�. These traditional methods of multi-
fractal analysis determine the fractal properties of the fluc-
tuations under various moment orders generally based on the
entire set of observed or simulated fluctuations. If such mo-
ment orders demonstrate self-similar fractal properties, then
the fluctuations exhibit a monofractal nature. In this case, the
probability distribution functions �PDFs� of the magnitude of
the fluctuations at different scales can be mapped onto one
master PDF in terms of one parameter with a single scaling
�fractal� power. More often, at least for fluctuations associ-
ated with space plasmas, different fractal properties are
found with different moment orders, meaning that the fluc-
tuations have multifractal characteristics. For such fluctua-
tions, the idea of one single scaling power can no longer be
applied to relate the PDFs at different time scales.

Recently, a technique �14� for analyzing intermittent fluc-
tuations has been developed to describe the explicit multi-
fractal characteristics and indicate how they are distributed
by parametrically separating the fluctuations. The technique,
known as rank-ordered multifractal analysis �ROMA�, re-
tains the spirit of the traditional structure function analysis
and combines it with the idea of one-parameter scaling of
monofractals. It was first applied to the results of a large-
scale two-dimensional �2D� magnetohydrodynamic �MHD�
turbulence simulation.

We aim to apply the idea of ROMA to intermittent
electric-field fluctuations measured in the auroral zone. Un-
like the 2D MHD fluctuations, the auroral zone electric-field
fluctuations sometimes exhibit crossover behavior spanning

across contiguous regimes of scales with different multifrac-
tal characteristics. Using the auroral zone electric field mea-
sured by the SIERRA �Sounding of the Ion Energization Re-
gion: Resolving Ambiguities� sounding rocket as an
example, we shall apply the ROMA technique for fluctua-
tions exhibiting crossover behavior straddling such contigu-
ous regimes of scales.

This paper is structured as follows: in Sec. II, we apply
the traditional structure function analysis to a fluctuating se-
ries of an electric field measured by the SIERRA sounding
rocket. Based on the results of the analysis of the fluctua-
tions, different regimes of scales of multifractal characteris-
tics are identified. In Sec. III, ROMA is applied to each re-
gime. Using the contiguous scaling property over the rank-
ordered scales, we then extend the technique of ROMA in
Sec. IV, in which we shall show how a global parametric
variable may provide the scaling over all regimes of scales.

II. STRUCTURE FUNCTION ANALYSIS AND SINGLE
FRACTAL POWER SCALING

The data used in this study are a time series of an electric-
field component perpendicular to the magnetic field, as mea-
sured by the SIERRA sounding rocket in the auroral zone.
The time series of the fluctuations, as shown in Fig. 1 �top�,
corresponds to where the rocket was between 550 km alti-
tude and its apogee at 735 km altitude. The averaged spectral
density is broadband as shown in Fig. 1 �bottom� and this
type of electric-field signature has been called the broadband
extremely low frequency �BBELF� fluctuations. It has been
suggested by Chang �15� that such broadband signature
might be the manifestation of intermittent turbulence. In fact,
fluctuations in a subset of this time series have been shown
to be intermittent based on analyses with the techniques of
PDF, wavelet analysis, local intermittency measure, and par-
tition function indicating that the fluctuations are multifractal
in nature �5,12�.

PHYSICAL REVIEW E 81, 036414 �2010�

1539-3755/2010/81�3�/036414�11� ©2010 The American Physical Society036414-1

http://dx.doi.org/10.1103/PhysRevE.81.036414


The origin of intermittent fluctuations in magnetized plas-
mas was interpreted ��16� and references contained therein�
as the result of the sporadic mixing and/or interactions of
localized pseudocoherent structures. The dominant forms of
such structures in the auroral zone probably include those
similar to the nearly 2D oblique potential structures simu-
lated by Seyler �17� based on the reduced MHD formulation
of the inertial Alfvén fluid equations and also other small
scale kinetic coherent structures �i.e., structures generated by
the collective interaction of charged particles�. The interac-
tions of these structures are the manifestation of localized
reconnections mediated by intermittent inertial Alfvén waves
and other electromagnetic and electrostatic waves, general-
ized resistivity, and/or coarse-grained dissipation. Thus, we
expect a significant fraction of such fluctuations to be elec-
trostatic and transverse �15�, perhaps interspersed with small
components of electrostatic �18� and/or electromagnetic
waves. When detected in the spacecraft frame, the signatures
of the interacting and nearly electrostatic structures are Dop-
pler shifted �19–21�. They have been shown to have rela-
tively slow moving speeds in the rest frame �22�. Thus, a
dominant fraction of the fluctuations may be recognized as
the spatial fluctuations of low frequency intermittent inertial
Alfvén turbulence and small scale kinetic turbulence. Also
the time series and time scales may be interpreted mainly in
terms of spatial scales and spatial fluctuations. Assuming the
horizontal speed U of the spacecraft is much larger than that
of the movements of the broadband turbulent fluctuations
and the geomagnetic field is essentially vertical, the time
scales � to be discussed below may be viewed approximately
as spatial scales ��U�, where U�1.5 km /s. �This assump-
tion is similar to that of the “Taylor hypothesis” in solar wind

turbulence studies, where the solar wind speed is generally
much larger than the spacecraft speed.� Nevertheless, it must
be recognized that entrained within such observed broadband
turbulence there may be small fractions of electromagnetic
and Doppler-shifted electrostatic propagating waves.

We shall first apply the structure function analysis, a tra-
ditional method of multifractal analysis, to the time series of
the electric field, E. For a given time scale �, we calculate the
increment of the field �E�E�t+��−E�t�. We can then obtain
P���E� ,��, the PDFs of the absolute value of �E at scale �, as
shown in Fig. 2, which include the plots for all the time
scales �from 5 to 1280 ms� considered in our study. Note that
the PDFs are normalized such that

�
0

�

P���E�,��d��E� = 1. �1�

The structure function at time scale � with moment order q is
defined to be

Sq��� � 	��E����q
 = �
0

�

��E�qP���E�,��d��E� , �2�

where 	 . . . 
 denotes averaging over t. In Eq. �2�, the moment
order q is taken to be non-negative to ensure that the right-
hand side of the equation does not diverge. With non-
negative q, one then looks for the scaling behavior

Sq��� � ��q. �3�

Generally, the “fractal dimension” �q may not vary linearly
with q. But if �q is linearly proportional to q, then the fractal
properties of all the moments can be characterized by a
single fractal number. That would be the case for monofrac-
tals since the fractal characteristics of all moment orders are
similar to each other. This, in turn, renders a constant value
for the “Hurst exponent” defined as
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FIG. 1. �Top� Time series of an electric-field component perpen-
dicular to the magnetic field in the auroral zone as measured by the
SIERRA sounding rocket when the rocket was between 550 km and
its apogee at 735 km altitude. �Bottom� Average spectral density of
the electric-field component over the duration.

0 10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

|δ E|

P
(|

δ
E

|,
τ)

τ = 5 ms
τ = 10 ms
τ = 20 ms
τ = 40 ms
τ = 80 ms
τ = 160 ms
τ = 320 ms
τ = 640 ms
τ = 1280 ms

FIG. 2. �Color online� PDF P���E� ,�� at nine different time
scales varying from �=5 to 1280 ms. The unit of ��E� is mV/m.
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H�q� � �q/q . �4�

For multifractals, the Hurst exponent would vary with q. In
the case of monofractals, one may scale the PDFs for differ-
ent �’s with one scaling function Ps and one power-law pa-
rameter in terms of a constant scale exponent s as follows:

P���E�,�� = ��/�0�−sPs„��E���/�0�−s
… , �5�

where �0 is a reference time scale. Such scaling implies a
functional relation between the power-law scale invariants
�23�:

P���E�,����/�0�s and Y = ��E���/�0�−s, �6�

with a constant value of s and has been employed in studies
of various kinds of fluctuating fields, including the stock
market indices �24�, magnetic fluctuations in space �16,25�,
and fluctuating events of other natural or experimental sys-
tems �26�.

Figure 3 shows the plots of Sq��� vs � at a few moment
orders q for the electric-field fluctuations. It is clear from the
plot for q=1 �top left panel� that Eq. �3� cannot be applied
throughout the entire range of time scales. There are at least
two regimes in � where Eq. �3� may be separately applied,
with the crossover time scale appearing at ��80 ms. The
information based on the other panels of the figure indicates
that the time scales above 80 ms should be further divided
into different regimes with ��160 and 320 ms being other
crossover scales. Thus, the auroral zone electric-field fluctua-
tions seem to exhibit four different regimes over the time
scales up to 1280 ms: regime 1 from ��5 to 80 ms; regime
2 from ��80 to 160 ms; regime 3 from ��160 to 320 ms;
and regime 4 for ��320 ms. We shall rank order the time
regimes parametrically by an index i=1, 2, 3, and 4, and
study the multifractal characteristics of each regime sepa-
rately.

It remains to be determined, however, whether the fluc-
tuations would exhibit monofractal behavior within each of

10
1

10
2

10
3

10
−2

10
0

10
2

τ

S
q

(τ
)

q = 1

10
1

10
2

10
3

10
−2

10
0

10
2

τ

S
q

(τ
)

q = 2

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

τ

S
q

(τ
)

q = 3

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

10
6

τ
S

q
(τ

)

q = 4

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

10
6

10
8

τ

S
q

(τ
)

q = 5

FIG. 3. Plots of Sq��� vs � for moment order q of integer values from 1 to 5. The plots indicate the existence of four distinct regimes in
time scale: regime 1: �=5 to 80 ms; regime 2: �=80 to 160 ms; regime 3: �=160 to 320 ms; regime 4: ��320 ms. The dashed lines indicate
fitting through the five time scales of regime 1.
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the rank-ordered regimes. We shall continue with the discus-
sion on structure function analysis in detail only for the case
of regime 1. The dotted lines in Fig. 3 are straight lines fitted
to the points that belong to regime 1. Their slopes are the
corresponding values for �q, which are shown in Fig. 4 along
with the Hurst exponent H�q�. In the top panel of the figure,
the plot of �q vs q is nearly—but not quite—a straight line
through the origin, suggesting that the fluctuations are mul-
tifractal, but perhaps close to monofractal within the time
scales of regime 1. The multifractal nature of the fluctua-
tions, however, is more clearly indicated by the nonconstant
value of H�q� in the bottom panel. Therefore, we expect that
the scaling relation in the form of Eq. �5� would not hold
even within this regime. If the scaling relation were to hold,
one would be able to find a constant value of s that, based on
Eq. �5�, enables the PDFs at all five time scales of regime 1
to collapse into a single function Ps�Y� where Y is given by
Eq. �6�. Using �0=5 ms and trying a wide range of values
for s, we map each P���E� ,�� to its respective scaling func-
tion Ps�Y� and find that the closest agreement among the five
time scales occurs at s=0.69, for which the results are shown
in the top panel of Fig. 5. Although the PDFs collapse very
well to a single curve for fluctuations at small magnitudes,
up to about Y =0.5, their agreement is not good at all toward
the tail of the distributions. As we try to choose a different
value of s to improve the agreement at the tail, such as the
results shown in the bottom panel of Fig. 5 with s=0.9, the
mapped PDFs do not collapse onto each other at small Y
anymore. Thus, the fluctuations indeed do not obey scaling
relation �5�, a further indication of their nonmonofractal or
multifractal nature.

III. APPLICATION OF ROMA TECHNIQUE TO
INDIVIDUAL REGIMES

The ROMA technique can be applied to each of the four
rank-ordered regimes for the auroral zone electric-field fluc-
tuations. In this section, we shall demonstrate the method
and its application in detail to time scales of regime 1 only.
We have seen in the previous section that because the fluc-
tuations are not monofractal in nature, for any given constant
value of the scaling exponent s, the PDFs at different time
scales collapse onto a single curve, at best, over only a por-
tion in the domain of Y. The idea of ROMA is to divide the
domain of Y into separate ranges, and for each range, to
determine a value of s that would satisfy Eq. �5�. As a result,
the scaling exponent s can take on different values over dif-
ferent ranges of Y. To solve for the scaling exponent for a
given range of Y = �Y low,Yhigh�, we construct a range-limited
structure function Sq���� with prescribed trial values of s:

Sq���� = �
Ylow��/�0�s

Yhigh��/�0�s

��E����qP���E�,��d��E� . �7�

Note that unlike the traditional structure function analysis,
ROMA can be carried out with negative values of q without
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0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Y

P
s(Y

)

s = 0.69

τ = 5 ms
τ = 10 ms
τ = 20 ms
τ = 40 ms
τ = 80 ms

0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Y

P
s(Y

)

s = 0.9

τ = 5 ms
τ = 10 ms
τ = 20 ms
τ = 40 ms
τ = 80 ms

FIG. 5. Profiles of Ps�Y� based on applications of single-
parameter scaling �Eqs. �5� and �6�� with two different values of s
for � in regime 1.

TAM et al. PHYSICAL REVIEW E 81, 036414 �2010�

036414-4



the problem of Sq���� diverging, except for the range that
includes Y low=0. Similar to the approach with the traditional
structure function method, we then look for the scaling be-
havior

Sq���� � ��q�, �8�

such that

�q� = qs . �9�

If a �unique� solution exists for s for the chosen range of Y,
then the fractal behavior of the fluctuations within this range
is monofractal and characterized by the fractal number �local
Hurst exponent�, s.

To demonstrate the technique for determining s, Fig. 6
shows the results of the application of ROMA to the range of
Y = �0.8,1.2� for the electric-field fluctuations at time scales
of regime 1 using q=2 as an example. In the figure and in the
following discussion, the subscript “1” is added to “s” and
“Y” to denote that the application is for the i=1 regime only.
Every point plotted in the figure is obtained by finding �q�
with Eqs. �7� and �8� based on a given value of s1 and a fixed
q. The dotted lines correspond to Eq. �9�, with s replaced by
s1. Because the scaling exponent must satisfy Eq. �9�, the

solution for s1 has to fall on the dotted line. The plot in the
top panel of Fig. 6 indicates that the solution for s1 is ap-
proximately 0.8. We increase the resolution in our trial val-
ues of s1 and find a more precise solution for the scaling
parameter to be s1�0.804. We then check the validity of this
solution by using this value of s1 to obtain �q� for various
values of q; a valid solution should yield a result that agrees
with Eq. �9� �with s replaced by s1� for every q. Figure 7
confirms the validity of our solution, as every point in the
plot of �q� vs q falls on the dotted line that corresponds to Eq.
�9�.

Similarly, we find values for the scaling exponent s1 for
other ranges of Y1. Figure 8 shows the solutions we get from
all the ranges, with each horizontal line in the plot indicating
the value of s1 for the corresponding Y1 range. The variation
of s1 for different ranges of Y1 indicates the multifractal be-
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havior of the fluctuations within the time scales of regime 1.
This is the approximate multifractal spectrum for regime 1
using the ROMA technique. The spectrum s1�Y1� indicates
how the various fractal properties of the fluctuations in re-
gime 1 are distributed. The spectrum is implicit since Y1
depends on s1. In principle, one may apply this technique
using smaller and smaller Y1 ranges and get better and better
resolution in Y1. By doing so, one can visualize s1 to be a
continuous function of Y1; a plot of s1�Y1� would appear as a
continuous spectrum. However, for practical purposes, such
continuity usually cannot be achieved for a finite time series
of data. As the size of the Y1 ranges keeps decreasing, fewer
and fewer data points are available for each range; the valid-
ity of the statistics used to determine Sq���� will result in
unreliable fluctuations.

The scaling for the range that includes the smallest Y1,
namely, Y1= �0,0.1� in our calculations, is found to be char-
acterized by s1=0.694, as shown in Fig. 8. Such a result for
s1 is very close to 0.69, a value that would lead to the col-
lapse of the PDFs in the corresponding range of Y1 for the
five time scales in regime 1, as indicated in the top panel of
Fig. 5. As Y1 gradually increases, we find that s1 initially
decreases to about 0.66 for Y1= �0.1,0.3�, but increases rap-
idly after that to above 0.85 when Y1= �1.2,1.8�. Beyond
such a range in Y1, s1 begins to show a slightly decreasing
trend, maintaining a value as high as 0.83 when Y1 increases
to the range 2.6–3.6. One may notice the resemblance be-
tween the general shape of s1�Y1� in Fig. 8 and H�q� in the
bottom panel of Fig. 4, which may be understood as follows:
from Eqs. �3� and �4�, it is clear that for a given moment
order q, the Hurst exponent depends on how Sq��� scales
with � for the time scales within the same regime. The struc-
ture function Sq��� can be understood as a sum of contribu-
tion from all parts of the PDF P���E� ,��, as suggested by Eq.
�2�. For a given PDF, there is a certain portion of ��E� that
would contribute most to the structure function and the value
of such ��E� would depend on q. Generally, as q increases,
one would find the portion of ��E� with the most significant
contribution moving toward the tail of the PDF. If we ex-
press the PDF as a function of Y1 rather than the unscaled
variable ��E�, it would mean that the range that contributes
most to the structure function would be found at a larger
value of Y1 as q increases. If we use only such a range in Y1,
as opposed to any other similar partial ranges, to construct
the partial structure functions Sq���� in Eq. �7�, the resulting
�q� based on Eq. �8�, in principle, should be the most reason-
able approximation for the fractal dimension �q �obtained
from the full structure functions by Eq. �3�� at the moment
order q where such a Y1 range dominates. Thus, to a certain
extent, the variation of �q� through ranges in Y1 should char-
acterize the qualitative behavior of �q vs q. If we now com-
pare Eq. �9� with Eq. �4�, which can be written as �q=qH, we
can see that the relationship between s1�Y1� and H�q� is the
same as that between �q� and �q; s1�Y1� characterizes the
qualitative behavior of H�q� to a certain extent.

Generally, how good the resemblance between the shape
of s�Y� and H�q� depends on how well the domains of ��E�
and Y are correlated. In particular, the above argument for
the resemblance does not apply well when a narrow range in
the domain of ��E� corresponds to a wide range in the do-

main of Y. Such a situation may occur—as one may infer
from Eq. �11� below—when there is a significant decrease in
s over a small range in Y. In that case, the Hurst exponent at
the moment order that emphasizes the narrow range in ��E�
would characterize the average fractal behavior of a wide
range in Y. Because this average behavior is not detailed
enough to describe the change in the scaling behavior over
such a range of Y, the variation of H�q� would fail to reflect
the specific variation or fluctuation of the rank-ordered spec-
trum s�Y�, which is a more accurate description of the local
fractal behavior. Therefore, when H�q� and s�Y� are found to
have very different shapes, one may consider that as an in-
dication of inadequacy of the traditional structure function
analysis. Later, we shall see that such a situation actually
occurs for the auroral electric-field fluctuations in one of the
regimes.

From the above discussion of the relationship between
s1�Y1� and H�q�, one perceives that each value of s1 plays the
role of the Hurst exponent for a small local range of the
PDFs. Thus, when local ranges of the PDFs for the fluctua-
tions are considered, we expect s1�Y1� to share the utilities of
the Hurst exponent in analyzing fluctuations. For instance,
based on the results that s1�Y1� is overall considerably larger
than 0.5, the classical demarcation for the Hurst exponent
between persistency and antipersistency, we may wish to
conclude that the fluctuations are all persistent at the time
scales of regime 1. However, the apparent persistency may
be due to kinetic effects, which are probably important in
this regime of small scales. In addition, at small values of Y1,
which correspond to small sizes of ��E�, the scaling exponent
s1 increases rapidly, an indication of possible developing in-
stability and turbulence. The fluctuations seem to settle down
to a more stable and developed turbulent state as Y1 becomes
larger, as the values of s1 seem to become more and more
slowly varying.

With the determination of the rank-ordered spectrum of
the scaling exponent s1�Y1�, the scaling relationship, instead
of Eq. �5�, can now be expressed as

P1���E�,�� = ��/�0�−s1�Y1�Ps1„��E���/�0�−s1�Y1�
… , �10�

corresponding to a second rank-ordered parameter

Y1 = ��E���/�0�−s1�Y1�, �11�

where P1���E� ,�� denotes P���E� ,�� for � belonging to re-
gime 1. We emphasize that, unlike that for monofractal scal-
ing, fluctuations within regime 1 do not form a single power-
law scale invariant with a constant value of s1. Instead, the
fluctuations are grouped into a spectrum of power-law scale
invariants with different fractal powers characterized by
s1�Y1�. “Y1” is, nevertheless, a parametric power-law scaling
variable within regime 1. In principle, Eq. �10� is valid for
the entire range of ��E� at any time scale � within regime 1.
In practice, however, the scaling relationship holds only up
to a finite value of ��E�, above which the number of samples
from the data is not enough to give accurate statistical results
for Sq����. Correspondingly, since Y1 is affected by such a
limitation related to statistics, it is expected that the accuracy
of the results associated with power-law scaling can only be
maintained up to a certain finite value of Y1. In the domain
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where there is no such problem due to statistics, ROMA,
when applicable, has a distinct advantage over the traditional
structure function analysis in that it is able to provide addi-
tional information about the multifractal fluctuations. First,
note that with s1�Y1� determined, one is able to solve for Y1
in the implicit equation �11� for given ��E� and �. Using the
solution for Y1, one is then able to find the corresponding
scaling exponent s1, and, based on Eq. �9� �with s now re-
placed by s1�, �q� as well. In other words, given ��E� and �,
ROMA is able to provide the fractal properties associated
with fluctuations of that magnitude at that time scale within
the parametric rank i=1. In contrast, �q, which is determined
from Eq. �3� based on the traditional structure function
analysis, reflects only the fractal property of the entire set of
observed fluctuations without distinguishing between the
various magnitudes and time scales. Second, ROMA pro-
vides a second rank-ordered parameter Y1, which, as dis-
cussed above, is solvable for given ��E� and �.

We may now map the PDF of the electric-field fluctua-
tions at each of the time scales in regime 1 to a scaling

function Ps1�Y1� based on the following equation derived
from Eqs. �10� and �11�:

Ps1�Y1� = ��/�0�s1�Y1�P1���E�,�� , �12�

using �0=5 ms and the profile of s1�Y1� from linear interpo-
lation through the midpoints of the ranges in Y1. Figure 9
shows the results of the mapping for the various �. One can
see that the results for the various Ps1�Y1� agree quite well up
to about Y1=1.8. Beyond that, there is increased discrepancy
due to the aforementioned problem associated with poor sta-
tistics. Nevertheless, at those relatively large values of Y1,
the various Ps1�Y1� still appear to agree better than those
obtained by the traditional single fractal power scaling �cf.
Fig. 5�.

Similar calculations may be carried out for the regimes i
=2, 3, and 4 yielding si�Yi� and Psi�Yi� as shown in Figs.
10–15. The agreement between the scaled PDFs for the time
scales within the same regime verifies the validity of the
results of si�Yi�, at least in the ranges of Yi where the samples
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are sufficient for the statistics to be meaningful. We shall
briefly discuss the variations and the probable meaning of the
rank-ordered spectrum for each regime. For regime 2, the
shape of s2�Y2� �Fig. 10� is generally comparable to the
variation of the corresponding Hurst exponent H�q� found
for this regime, as shown in the top panel of Fig. 16, due to
a similar reason as in the case of regime 1. At small values of
Y2, s2 exhibits fluctuations in the range around 0.5. Such
fluctuating behavior is rather similar to that of s1 at small
values of Y1 �Fig. 8�, except that the values for s2 are con-
siderably lower. Thus, the developing turbulence seems to be
of a mixture of persistent and antipersistent nature, probably
as a result of effects beyond the kinetic range starting to play
a non-negligible role at the scales of this regime. As Y2 be-
comes larger, the values of s2 become more stable, indicative
of the turbulence settling down to a more stable and devel-
oped state, similar to the case for regime 1. The apparent
persistent nature of the fluctuations suggested by the values
of s2 at large Y2 is perhaps due to the kinetic effects still
being more dominant than those of larger scales.

Regime 3, in contrast to the previous two regimes, fea-
tures a rank-ordered spectrum s3�Y3� whose shape does not
resemble that of the corresponding H�q� �Fig. 12 and the
middle panel of Fig. 16�. This can be explained, based on our
discussion earlier, by the significant decrease in the value of
s3, which drops from 0.677 to 0.285 as Y3 increases from
�5,8� to �14,19�. In addition to such a relatively wide range of
values covered by the rank-ordered spectrum in this regime
as compared with regimes 1 and 2, s3�Y3� also fluctuates over
a large range in Y3 rather than only near small values of Y3
suggesting that the turbulence at the scales of this regime is
highly unstable. In fact, one may infer about the unstable
turbulent state just by qualitatively comparing the PDFs
P���E� ,�� at the two time scales considered in this regime,
�=160 and 320 ms. As shown in Fig. 17, when ��E� is small,
the plots of the PDFs at the two time scales are close to each
other. But the separation between the plots becomes wider
when ��E� increases to about 5–8 mV/m for �=160 ms �in-
dicated by the thick arrow in the figure�, and then becomes
narrow again as ��E� increases to about 14–19 mV/m �indi-
cated by the thin arrow in the figure�, and wider again when
��E� increases further. The highly fluctuating separation be-
tween the two plots means that the shape of the two PDFs is
far from self-similar, an indication that the turbulent fluctua-
tions are in an unstable state. The change in this separation as
��E� varies is also associated with the change in the local
scaling exponent s3: the wider this separation, the larger s3,
thus, giving rise to the fluctuations in the rank-ordered spec-
trum s3�Y3� �Fig. 12�.

For regime 4, the rank-ordered spectrum s4�Y4� shares the
same general shape as the corresponding H�q� �Fig. 14 and
the bottom panel of Fig. 16�. At small values of Y4, there is
an increase in s4. After reaching a peak value close to 0.5, s4
then decreases monotonically �at least in the range where the
statistics are reliable� as Y4 increases further. The monotoni-
cally decreasing trend of the rank-ordered spectrum and the
antipersistent nature of the fluctuations are qualitatively simi-
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lar to those obtained for the solar wind �27� and MHD nu-
merical simulations �14�. Thus, it is tempting to conjecture
that in regime 4 the fluctuations bear the signatures of MHD
turbulence.

IV. APPLICATION OF ROMA ACROSS REGIMES OF
TIME SCALES

We have demonstrated the utilities of ROMA on fluctua-
tions within different regimes of time scales in terms of two
rank-ordered parametric variables, the “index i” and the
“power-law scaling variable Yi.” This idea can be applied to
any multiparameter rank-ordered regions such as those char-
acterizing anisotropy, inhomogeneity, and unsteadiness. The
indexing of rank ordering does not need to follow the size of
the rank-ordered parameter�s�. In fact, size or numerical
value may not be the criterion for rank ordering. When the
rank ordering is in fact size dependent and contiguous, a
further extension of the ROMA technique may be applied.
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We shall now describe the global crossover behavior over
contiguous rank-ordered regimes using the example of the
electric-field fluctuations in the auroral zone.

The four ROMA spectra are applicable to the four sepa-
rate time regimes separately. There is also a roughly defined
common time scale between any two adjacent regimes: �
�80 ms belonging to both regimes 1 and 2, ��160 ms
belonging to both regimes 2 and 3, and ��320 ms being
common to regimes 3 and 4. Assuming the non-power-law
crossover ranges between contiguous time regimes are very
narrow such that the changes across regimes are essentially
characterized by abruptly changing but piecewise continuous
power laws, we may extend the ROMA technique to deter-
mine an implicit “multipower” global scaling variable asso-
ciated with the fluctuations covering all four regimes of time
scales as follows: ROMA is applicable to the ith regime �i
goes from 1 to 4 in our case�, and Pi���E� ,�� with time scale
� that belongs to that regime can be described by the scaling
relationship

Pi���E�,�� = ��/�̃i�−si�Yi�Psi„��E���/�̃i�−si�Yi�
… , �13�

where �̃i is the smallest time scale of the ith regime and si�Yi�
is the rank-ordered spectrum of the scaling parameter for the
regime, with Yi being the “scaled” parametric scaling vari-
able implicitly provided by the equation

Yi = ��E���/�̃i�−si�Yi�. �14�

The four scaling variables as well as the scaled PDFs for i
=1,2 ,3 ,4 are related due to the assumed piecewise continu-
ous property across the contiguous regimes. Straightforward
algebra leads to the following recursion relations:

Yi+1 = Yi��̃i+1/�̃i�si�Yi�, �15�

Ps�i+1����E�� = ��̃i+1/�̃i�−si�Yi�Psi„��E���̃i+1/�̃i�−si�Yi�
… . �16�

Applying this idea to the four time regimes, we find a global
scaling variable Yglobal across the four regimes with Ps1 be-
ing the global scaling function as follows:

Yglobal �

��E���/�̃1�−s1�Y1� = Y1 regime 1

��E���/�̃2�−s2�Y2���̃2/�̃1�−s1�Y1� = Y2��̃2/�̃1�−s1�Y1� regime 2

��E���/�̃3�−s3�Y3���̃3/�̃2�−s2�Y2���̃2/�̃1�−s1�Y1� = Y3��̃3/�̃2�−s2�Y2���̃2/�̃1�−s1�Y1� regime 3

��E���/�̃4�−s4�Y4���̃4/�̃3�−s3�Y3���̃3/�̃2�−s2�Y2���̃2/�̃1�−s1�Y1� = Y4��̃4/�̃3�−s3�Y3���̃3/�̃2�−s2�Y2���̃2/�̃1�−s1�Y1� regime 4
�
�17�

with

P���E�,�� =
Yglobal

��E�
Ps1�Yglobal� , �18�

applicable to all four regimes. Obviously this technique is
not limited by the number of regimes of time scales exhib-
ited by the fluctuations provided that they are contiguous.
The bottom panel of Fig. 18 shows the profiles of Ps1�Yglobal�
resulting from the mapping of P���E� ,�� of all the time
scales of the four regimes whose fractal exponents are given
in the top panel of the same figure.

To summarize, we have demonstrated that the ROMA
technique, when applicable, has advantages over the tradi-
tional structure function method in analyzing fluctuations
that exhibit multifractal behavior. ROMA is able to provide

the specific fractal properties for fluctuations of given mag-
nitude and given time scale, as well as scaling associated
with the PDFs of the fluctuations within a certain range of
time scales. In this study, we applied the ROMA technique to
the auroral zone electric-field fluctuations with two rank-
ordered parameters across contiguous multiple regimes of
different physical processes. The transition over the regimes
is characterized by a crossover behavior expressed in terms
of a global scaling variable and a global scaling function.
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